Abstract

We report findings concerning energy transport and dynamics in flares during the impulsive and gradual phases based on new ground-based and space observations (notably fromYohkoh). A preheating sometimes occurs during the impulsive phase. Caxix line shifts are confirmed to be good tracers of bulk plasma motions, although strong blue shifts are not as frequent as previously claimed. They often appear correlated with hard X-rays but, forsome events, the concept that electron beams provide the whole energy input to the thermal component seems not to apply. Theory now yields: new diagnostics of low-energy proton and electron beams; accurate hydrodynamical modeling of pulse beam heating of the atmosphere; possible diagnostics of microflares (based on X-ray line ratio or on loop variability); and simulated images of chromospheric evaporation fronts. For the gradual phase, the continual reorganization of magnetic field lines over active regions determines where and when magnetic reconnection, the mechanism favoured for energy release, will occur. Spatial and temporal fragmentation of the energy release, observed at different wavelengths, is considered to be a factor as well in energy transport and plasma dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.