Abstract
AbstractDetailed analysis of a high Mach number quasiperpendicular Earth bow shock crossing by the Magnetospheric Multiscale (MMS) spacecraft fleet reveal that lower‐hybrid (LH) whistler waves generated in the shock foot region transport energy predominately along the shock surface and slightly toward the shock ramp in the shock normal incidence frame, where wave energy accumulates and is dissipated into the plasma. This suggests the LH whistlers play an integral role in energy reconfiguration at high Mach number collisionless shocks with ramifications to plasma heating. The multipoint observations are used to quantify the wave characteristic parameters (via interferometry), Poynting fluxes, and energy conversion rates D, and to assess their scale dependencies and spatial and temporal properties. The whistler associated energy transport and conversion are found to depend on scale and location within the layer. High‐frequency electrostatic waves yield largest values of D. However, the dominant net energy exchange contribution is from the LH whistlers. In the foot spatially temporally coherent net energy exchange from the plasma to whistlers is observed, whereas deeper in the ramp net wave energy dissipation to the plasma is observed exhibiting significant space‐time variability. These results are consistent with the modified two stream instability driven by the relative drift between reflected ions and electrons as the mechanism for wave growth in the foot. Owing to strong electron heating, whistler energy dissipation in the ramp is attributed to Landau damping, which out‐competes the destabilizing effect of the reflected ion and electron drift.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.