Abstract

A correlation between the rate of ATP synthesis by F0F1 ATP-synthase and formate oxidation by formate hydrogen lyase (FHL) has been established in inverted membrane vesicles of Escherichia coli JW 136 mutant with double deletions (delta hya/ delta hyb) of hydrogenase 1 and 2 grown anaerobically on glucose in the absence of external electron acceptors (pH 6.5). ATP synthesis was suppressed by H+ -ATPase inhibitors N,N'-dicyclohexylcarbodiimide (DCCD) and sodium azide as well as by the protonophore carbonyl cyanide-m-chlorophenyhydrazone (CCCP). Copper ions inhibited formate-dependent hydrogenase and ATP-synthase activities but did not affect the ATPase activity of vesicles. The maximal rate of ATP synthesis (0.83 microM/min x mg protein) stimulated by K+ ions was determined when sodium formate, ADP and inorganic phosphate were applied simultaneously. The results confirm the assumption about the dual role of hydrogenase 3, formate hydrogen lyase subunit, which is able to couple the reduction of protons to H2 and their translocation through a membrane with chemiosmotic synthesis of ATP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call