Abstract

Energy transfers within large-eddy simulation (LES) and direct numerical simulation (DNS) grids are studied. The spectral eddy viscosity for conventional dynamic Smagorinsky and variational multiscale LES methods are compared with DNS results. Both models underestimate the DNS results for a very coarse LES, but the dynamic Smagorinsky model is significantly better. For moderately to well-refined LES, the dynamic Smagorinsky model overestimates the spectral eddy viscosity at low wave numbers. The multiscale model is in good agreement with DNS for these cases. The convergence of the multiscale model to the DNS with grid refinement is more rapid than for the dynamic Smagorinsky model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.