Abstract

Excited state energy level diagrams of coumarin-3-carboxylic acid (HCCA) chromophore, Eu(CCA)Cl2(H2O)2 (1), Eu(CCA)2Cl(H2O)2 (2), Eu(CCA)3(H2O)3 (3), Tb(CCA)2Cl(H2O) (4) and Tb(CCA)2(NO3)(H2O) (5) in gas phase and polar solution have been calculated by means of DFT/TDDFT/ωB97XD methods. Based on these results, the ability of CCA to sensitize Eu(III) and Tb(III) luminescence has been examined. The competitive excited state processes in the complexes - fluorescence, intersystem crossing (ISC) and phosphorescence, were analyzed depending on the environment, number of the ligands, Ln(III) ion type (Eu and Tb) and counteranion (Cl- and NO3-). It has been found that the environment altered the S1 state energy, oscillator strength, fluorescence lifetime as well as the S1 character - polar solution stabilized the S1(ππ*) state, whereas non-polar solution (gas phase, solid state) stabilized the S1(nπ*) state. The S1(nπ*) state was decisive for the efficient energy transfer as it suppressed the S1 emission of CCA and favored ISC or direct transfer to the emitting levels of Eu(III). The HCCA triplet (T1) state minimum energy (~2.7, ~2.6ZPE eV) and (ππ*) character were retained in Eu/Tb-CCA complexes regardless of the environment. The energy gap between the higher energy T1 donor state and the acceptor levels 5D1 of Eu(III) (~0.5eV) and 5D4 of Tb(III) (~0.1eV) provided optimal resonance conditions for effective energy transfer for Eu(III), but less probability for Tb(III). The nonradiative energy (CCA→Eu(III)) transfer rates and quantum luminescence yield for 2 and 3 were calculated by a strategy combining DFT geometries, INDO/S excitation energies and calculated Judd-Ofelt parameters. The excitation channel T1→5D0 through an exchange mechanism was predicted as the most probable one to populate the main emissive Eu-centered state in complexes 2 and 3. The more efficient luminescence of 3 than that of 2 was discussed and explained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.