Abstract

Surface modification with organic dye molecules is a useful strategy to manipulate the optical properties of lanthanide-doped nanoparticles (LnNPs). It enables energy transfer between dyes and LnNPs, which provides unprecedented possibilities to gain new optical phenomena from the dye-LnNPs composite systems. This has led to a wide range of emerging applications, such as biosensing, drug delivery, gene targeting, information storage, and photon energy conversion. Herein, the mechanism of energy transfer and the structural-dependent energy-transfer properties in dye-coupled LnNPs are reviewed. The design strategies for achieving effective dye-LnNP functionalization are presented. Recent advances in these composite nanomaterials in biomedicine and energy conversion applications are highlighted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.