Abstract

Cyanobacteria and red algae control the energy distributions of two photosystems (PSI and PSII) by changing the energy transfer among phycobilisome (PBS), PSI, and PSII. However, whether PSII → PSI energy transfer (spillover) occurs in the intact megacomplexes composed of PBS, PSI, and PSII (PBS-PSII-PSI megacomplexes) in vivo remains controversial. In this study, we measured the delayed fluorescence spectra of PBS-selective excitation in cyanobacterial and red algal cells. In the absence of spillover, 7% of the PBS (at most) would combine with PSII, inconsistent with the PBSs' function as the antenna pigment-protein complexes of PSII. Therefore, we conclude that spillover occurs in vivo in PBS-PSII-PSI megacomplexes of both cyanobacteria and red algae.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call