Abstract

It is shown that the energy migration between silicon nanocrystals embedded into a silicon dioxide host is caused by the “nonresonant” dipole-dipole interaction. This process is efficient only for a part of small nanocrystals among the whole ensemble of nanocrystals. The nonresonant dipole-dipole energy transfer has such a feature as the emission of two optical phonons at each step of the process. The time of the excitation transfer has been experimentally determined for nanocrystals 1.5 nm in size existing in the ensemble of nanocrystals with a density of 1018 cm−3 and the size distribution with a standard deviation of 20%. A value of 30 μs obtained for this time is in good agreement with the performed theoretical estimation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call