Abstract

Layered silica/surfactant mesostructured thin films containing chlorophyllous pigments [C13(2)-demethoxycarbonyl-pheophytin b (pyroPheo b) or zinc C13(2)-demethoxycarbonyl-chlorophyll b (Zn-pyroChl b)] have been prepared on an indium tin oxide (ITO) electrode grafted with a chlorophyll derivative possessing a triethoxysilyl group (copper C13(2)-demethoxycarbonyl-chlorophyllide a 3-triethoxysilyl propylamide, Cu-APTES-Chl a) to achieve effective light harvesting and successive photocurrent generation by the mesostructured films. The incorporation of pyroPheo b and Zn-pyroChl b in the mesostructured film resulted in 1.2- and 1.6-fold increases of the photocurrent density, respectively, as compared to the case of an antenna pigment-free film also grafted to a surface-modified ITO electrode. The difference action spectra, between the electrodes with and without the antenna pigments, coincided well with the absorption spectra of the immobilized pigments. Because direct electron injection from the antenna pigments in the mesostructured films to the ITO electrode was scarcely observed, the energy transfer from the antenna pigments to Cu-APTES-Chl a plays an important role for the increase in photocurrent density. The usefulness of the mesostructured films as model systems is discussed in relation to the photosynthetic primary processes of higher plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call