Abstract

In this study, a solid-state reaction was employed to synthesize SrY2O4: Sm3+, SrY2O4: Eu3+ and SrY2O4: Sm3+/Eu3+ phosphors. An intriguing redshift phenomenon from charge transfer band (CTB) edge was investigated for single-band ratiometric (SBR) thermometry applications. The phosphors synthesized exhibited an orthogonal CaFe2O4 structure with Pnam (62) space group. The Y3+ sites from host lattice were most likely to be replaced by Sm3+/Eu3+ ions. The sample of SrY2O4: 0.03 Sm3+/0.3Eu3+ showed a large degree of agglomeration with elongated particles, having an average size of approximately 4 μm. The energy bandgap decreased due to increased surface imperfections, resulting in enhanced defect level concentration. The dipole-dipole interaction could be used to explain energy transfer (ET) of Sm3+-Sm3+ and Sm3+-Eu3+. Furthermore, the energy transfer (ET) efficiency of Sm3+→Eu3+ in Sr2YO4 reached 77.7 %. The sample exhibited a good thermal stability (90.956 %@423 K) with Ea of 0.31 eV, which was an important parameter for broadening thermometry range. A thermometry strategy utilized this redshift phenomenon from CTB edge with anti-thermal quenching behavior and other peaks or bands with thermal quenching was therefore proposed. The high Sr value of 1.533 % K−1@298 K provides a great potential for optical thermometry application, contributing significantly to the advancement of single band ratiometric thermometry technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call