The Paris Agreement calls for countries to pursue efforts to limit global-mean temperature rise to 2°C compared to the pre-industrial level. To achieve this, it is essential to accelerate the low-carbon transition of energy system. China is the largest carbon emitter and plays a decisive role in mitigating global climate change. The transition pathways for China to contribute to meeting the global 2°C target, however, have not been extensively explored. Here we develop a bottom-up national energy technology model (C3IAM/NET), a linear optimization model, to reveal the energy consumption, carbon emissions and technology pathway at the national and sectoral levels in line with the 2°C climate target. Results show that China's carbon emissions need to peak at the year 2023 and reduce to 3.56 GtCO2 by mid-century. During the 2020-2050 planning horizon, the remaining carbon budget is estimated to be controlled within 234 GtCO2, with a cumulative emission reduction of 165.3 GtCO2, of which the power sector bearing the largest share of responsibility, followed by the industry, transportation and building sectors. We project that China's primary energy consumption needs to peak before 2040 and the proportion of non-fossil energy in energy structure needs to reach 76% by 2050, and about 88.4% of electricity production comes from renewables and nuclear energy.

Full Text

Published Version
Open DOI Link

Get access to 115M+ research papers

Discover from 40M+ Open access, 2M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call