Abstract

Individuals with an atherogenic lipoprotein phenotype (ALP) characterized by increased levels of small dense low-density lipoprotein (LDL) particles tend to have greater adiposity compared to unaffected subjects. We sought to determine whether this may be related to alterations in energy substrate partitioning or efficiency. These were assessed by indirect calorimetry in men with ALP (ALP(+), n = 7) and unaffected controls (ALP(-), n = 8) during rest (30 min) and exercise (10 min). Gross, net and delta efficiencies were calculated during graded leg-cycle ergometry at workloads of 10 and 50 W. Respiratory exchange ratios (RER) were significantly (P < 0.05) higher in ALP(+) vs. ALP(-) during rest (0.86 ± 0.01 vs. 0.83 ± 0.02) and exercise at 10 W (0.88 ± 0.02 vs. 0.84 ± 0.02) and 50 W (0.92 ± 0.01 vs. 0.87 ± 0.01, respectively) (P < 0.05). Lipid oxidation (kcal/min) was lower in ALP(+) vs. ALP(-) during rest (0.56 ± 0.02 vs. 0.71 ± 0.07) and exercise at 10 W (1.52 ± 0.25 vs. 2.00 ± 0.20) and 50 W (1.28 ± 0.10 vs. 2.32 ± 0.22, respectively) (P < 0.05). Gross and net efficiencies were significantly increased (P = 0.005) in ALP(+) vs. ALP(-) at 10 W. RER was correlated positively with plasma triglyceride during exercise and inversely with high-density lipoprotein (HDL) cholesterol and LDL peak particle diameter during rest and exercise (P < 0.05). These findings suggest that increased muscular efficiency at low exercise intensity and reduced lipid oxidation during rest and exercise may contribute to both dyslipidemia and increased adiposity in individuals with ALP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call