Abstract
We perform molecular dynamics (MD) simulations of a water capillary bridge (WCB) expanding between two identical chemically heterogeneous surfaces. The model surfaces, based on the structure of silica, are hydrophobic and are decorated by a hydrophilic (hydroxylated silica) patch that is in contact with the WCB. Our MD simulations results, including the WCB profile and forces induced on the walls, are in agreement with capillarity theory even at the smallest wall separations studied, h = 2.5-3 nm. Remarkably, the energy stored in the WCB can be relatively large, with an energy density that is comparable to that harvested by water-responsive materials used in actuators and nanogenerators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.