Abstract

In this paper, we address the energy storage management problem in distribution networks from the perspective of an independent energy storage manager (IESM) who aims to realize optimal energy storage sharing with multi-objective optimization, i.e., optimizing the system peak loads and the electricity purchase costs of the distribution company (DisCo) and its customers. To achieve the goal of the IESM, an energy storage sharing strategy is therefore proposed, which allows DisCo and customers to control the assigned energy storage. The strategy is updated day by day according to the system information change. The problem is formulated as a bi-level mathematical model where the upper level model (ULM) seeks for optimal division of energy storage among Disco and customers, and the lower level models (LLMs) represent the minimizations of the electricity purchase costs of DisCo and customers. Further, in order to enhance the computation efficiency, we transform the bi-level model into a single-level mathematical program with equilibrium constraints (MPEC) model and linearize it. Finally, we validate the effectiveness of the strategy and complement our analysis through case studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call