Abstract

This study presents the modeling and analysis of an ESS (energy storage system) for a TEC (tidal energy converter) to be installed in the Bay of Fundy, Canada. The electricity distribution grid that services the region has a minimum annual electricity demand of 0.9 MW. Policy limits the installation of renewable electricity generators to 0.9 MW at this site. An existing 0.9 MW WEC (wind energy converter) occupies this capacity, inhibiting further installations. The use of an ESS enables the installation of a 0.5 MW TEC by ensuring the combined electricity output from WEC and TEC does not exceed 0.9 MW. The objective of this study is to model the system and determine the characteristics of the ESS capacity, power, and cyclic nature.The WEC and TEC are modeled based on measured and simulated wind and tidal speed data respectively. An ESS is modeled to de-couple the TEC output from the grid demand. A curtailment analysis is conducted for various ESS capacity and power sizes to determine the economic benefit. Avoidance of all curtailment requires nearly 7 MWh of storage. Significant economic benefit may be found by reducing the ESS to less than 3 MWh, resulting in minor curtailment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.