Abstract

xCaZrO3–(1−x)NaNbO3 thin films (x = 0 − 0.04) are epitaxially grown on (001)La:SrTiO3 single crystal substrates via chemical solution deposition, and their energy storage properties are investigated. X-ray diffraction measurements showed that the deposited films are solid solutions with a single perovskite phase. Microstructural analysis performed via electron microscopy reveals that the deposited films exhibit a columnar structure. In addition, selected area electron diffraction patterns show that an antiferroelectric phase formed in CaZrO3-substituted films. Relative dielectric constants, εr, measured at various temperatures indicate a dielectric anomaly caused by structural phase transition. Its onset temperature decreased from 180 to 80 °C with increasing x. To clarify the antiferroelectric behavior, polarization − electric field, P − E, and capacitance − electric field, C − E, hysteresis loops are measured at room temperature, and results show polarization switching behaviors arising from the antiferroelectric phase. The maximum recoverable energy density, 2.3 J/cm3, was observed for x = 0.01, with an energy storage efficiency of 72%. Furthermore, the P − E hysteresis loops measured at various temperatures revealed that CaZrO3 substitution can enhance the efficiency and hence, improve the thermal stability of energy storage properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.