Abstract

Polymer-based dielectric energy storage materials have been playing critical roles in high-performance energy storage capacitors due to their high breakdown electric fields and facile processability. However, the low energy density and efficiency of polymer-based film capacitors limit their widespread application in various electronics products. In this contribution, we synthesized the SrBi4Ti4O15 (SBT) nanosheets with large aspect ratio by using the molten salt method and introduced them into the PVDF matrix to prepare a multilayer nanocomposite film, of which the discharge energy density and discharge efficiency were much improved. Finite element simulation results show that the addition of 2D SBT nanosheets can significantly improve the local electric field distribution of nanocomposite films. Finally, a high discharge energy density of 11.69 J cm−3 and an excellent discharge efficiency of 78.95% were simultaneously achieved in the 0/5/0 sample. This work provides a reference for polymer-based dielectrics with excellent comprehensive energy storage performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call