Abstract
We investigate the ability of a collection of deferrable energy loads to behave as a battery; that is, to absorb and release energy in a controllable fashion up to fixed and predetermined limits on volume, charge rate, and discharge rate. We derive explicit bounds on the battery capacity that can be offered, and show that there is a fundamental tradeoff between the abilities of collective load to absorb and release energy at high aggregate rates. Finally, we introduce a new class of dynamic priority-driven feedback policies that balance these abilities, and characterize the batteries that these policies can emulate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.