Abstract

This paper presents an adaptive control scheme for optimal dispatch of energy storage systems (ESS) to follow the pattern of intermittent power output of renewable energy sources (RES) in electric power distribution networks with the goal to minimize costs and reduce the need to compensate the variability and uncertainty of RES, mainly wind and solar. The proposed control scheme utilizes day-ahead forecasts of wind and photovoltaic (PV) power output obtained from hybrid intelligent methods. Once the forecasts are obtained, unit commitment (UC) is executed using forecasted data of load as well as wind and PV power in order to schedule optimal generation. The operational decisions are then fed into the economic dispatch (ED) problem, which has the control scheme embedded. As the actual power output of wind-PV deviates from the desired value due to forecast error, the adaptive control scheme developed in this paper assists the ESS to compensate the difference by charging or discharging. In order to evaluate the effectiveness of the proposed model, this paper considers a case study of a sixteen-bus test system and the results indicate that the ESS can reduce the deviation of the wind-PV power output between 1–5%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call