Abstract
Capacitors with high energy density and high discharging rate have been attracting attention for electric vehicles and military applications, in which the rapid discharge of large amounts of electric energy is required. Since ferroelectric thin film of perovskite structure has different polarization characteristics according to its crystallographic orientation, the charged energy density can be tailored. In this study, we investigated the effect of the crystallographic orientation of Pb(Zr0.52Ti0.48)O3 (PZT) thin films grown by chemical solution deposition on the energy storage capability and discharging rate. The {001} and randomly oriented PZT thin films were prepared and their dielectric and ferroelectric properties, stored energy densities, and discharging rates were characterized. The storage energy density of {001}-oriented film was found to be superior to that of other films, while its efficiency was nearly the same. It is believed that {001} oriented PZT thin film has potential for use in high performance capacitors with large energy density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.