Abstract

(Pb[Formula: see text]Ba[Formula: see text])[(Zn[Formula: see text]Nb[Formula: see text])[Formula: see text]Ti[Formula: see text]]O3 relaxor-type ferroelectric ceramics was obtained via classical solid-state reaction. The hysteresis loop results were discussed in the frame of ergodicity criterium around the characteristic ferroelectric relaxor freezing temperature. Slimer hysteresis loops were observed below the freezing temperature reflecting an ergodic relaxor behavior. Above this temperature, estimated around 223[Formula: see text]K for the studied system, larger and unsaturated like ferroelectric hysteresis loops were observed. This temperature also coincides with the slope change on maximum polarization and inflection point of remnant polarization curves. Energy storage, energy loss and efficiency values were determined in a wide temperature range. While the recoverable energy density shows relatively low values (0.23[Formula: see text]J/cm3), there are interesting behaviors for this parameter and for the efficiency, since the two physical quantities increase versus temperature and the efficiency even reaches the value of 97%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.