Abstract

The changes in the electronic subsystem of a porous carbon material caused by its doping with Mn, Cr, and Fe and laser irradiation were studied by the method of electron paramagnetic resonance. It has been found that Mn doping leads to the appearance of several paramagnetic centers, and laser irradiation facilitates the redistribution of electrons between different states so that their mobility increases due to the transition from the g = 3.9 to the g = 6.0 state. The Mössbauer spectroscopy of porous Fe-doped carbon material indicates the presence of oxygen ligands for iron ions, in particular the formation of octa- and tetra-complexes with redistribution of electron density between iron and oxygen nuclei, and, accordingly, changes in the degree of covalence of the chemical bond from Fe3+ to Fe2+.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call