Abstract

Transmission electron microscopy (TEM), atomic force microscopy (AFM) and Rutherford backscattering spectrometry (RBS) have been used to study the modification of Au nanoislands, grown on silicon substrates under high vacuum condition by MeV self-ion irradiation. Upon irradiation with 1.5 MeV Au 2+ ions, interesting observations were found for the nanoislands in comparison with continuous films: (i) higher probability of crater formation, (ii) larger sputtered particle size as well as coverage and (iii) enhanced sputtering yield. Crater formation has been studied as a function of impact angle at a fluence of 1 × 10 14 ions cm −2 and we found that crater formation is prominent at high impact angles (i.e. at glancing angle geometry). AFM has been used to determine the crater formation, TEM to study the sputtered particles as well as craters and RBS has been used to determine the sputtering yield from the nanoisland and continuous films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call