Abstract

The results of studying the energy spectrum of electrons and holes localized in second-type Ge/Si heterostructures with Ge quantum dots are presented. In such structures, holes are localized at Ge quantum dots, and electrons, in three-dimensional quantum wells, which form in Si at the Ge—Si interface because of inhomogeneous deformations that appear as a result of the difference between the Ge and Si lattice constants. It is shown that changes in the deformations in the assembly of quantum dots as a result of a variation in their spatial arrangement significantly changes the binding energy of electrons, the position of their localization at quantum dots, the binding energy and wave-function symmetry of holes at double quantum dots (artificial molecules), and the exchange interaction of electrons and holes in the exciton composition. A practically important result of the presented data is the development of approaches to increase the luminescence quantum efficiency and the absorption coefficient in assemblies of quantum dots.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.