Abstract

Energy of a black hole is usually quantized by invoking some area quantization scheme after expressing the energy in terms of the horizon area. However, in this approach one has to quantize the local and asymptotic energy of the black hole separately and the two results do not manifest any physical correspondence with each other. Here, as opposed to this practice, we find the unique energy spectrum of black holes by adopting a top-down approach. The physical links among the underlying quantum theory, statistical mechanics and thermodynamics of the black hole horizon play the central role in determining the energy spectrum. The energy spectrum that we obtain explicitly reveals the correspondence between asymptotic and local observations through the presence of the surface gravity of the horizon as a parameter in the spectrum, rather than being expressed as a function of area and consequently getting quantized in the usual approach. Thus, our result presents a new view as far as black hole energy quantization is concerned. The calculations are performed using the quantum geometric description of black hole horizons as laid down by loop quantum gravity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call