Abstract
Electrons generated during a pinch implosion in a hollow anode Mather-like plasma focus device (PF) are considered as a possible X-ray source via the impinging of those particles on medium and high- Z targets. A usual PF device has been slightly modified to optimise the X-ray production and their measurements by means of a suitable and non-invasive spectrometer. This ensemble allows measurements of X-rays generated booth by electrons turning back to the anode and by target collision of the so-called relativistic electron beam. The spectrum of the emitted photons is evaluated by using a differential absorption based technique. The X-ray spectrometer consists of a stack of LiF dosimeters which act both as detectors and filters to give curves of attenuated intensities. Finally, the energy distribution is calculated from such attenuation curves using an iterative procedure based on spectral algebra formalism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.