Abstract
The Schrödinger equation is solved by applying the Nikiforov-Uvarov-Functional Analysis method to the Hulthén plus screened Kratzer Potential. The Greene-Aldrich approximation is employed to determine the closed form expressions for the energy equation and the wave function. The Hellmann-Feynman theorem was employed to calculate the energy spectra and expectation values of various quantum states for diatomic moleculesof HCl and LiH. Subsequently, we employed the energy equation that we had previously derived to compute the partition function, which in turn enabled us to determine the thermodynamic properties associated with the diatomic molecules. The partition function for the diatomic molecules of 2Hand LiHwas calculated at different temperatures. The results indicate that the partition function of the two diatomic molecules rose as the temperature increased.The findings we obtained align with the results documented in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.