Abstract
To determine the physical significance of the impact toughness parameters and accurately characterize the low temperature impact toughness of transmission tower material Q420B, the finite element model of Charpy impact test is established on the basis of experiment. The simulation and test results are verified, and the specimen fracture is analyzed by scanning electron microscope. The formation and growth mechanism of the crack are dynamically analyzed. On this basis, energy separation method is used to investigate the effect of low temperature on impact toughness. The results show that the simulation and test results are in good agreement, and the ductile-brittle transition temperature of Q420B is about −50°C. The breaking process of the specimen is divided into the crack formation and propagation. When temperature drops from 20 to −60°C, the crack propagation energy decreases from 51.0 to 11.9 J, the crack formation energy reduces from 39.9 to 15.8 J, and the fracture time of the material drops from 1.8 to 0.6ms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.