Abstract

The Timepix3 is a photon counting semiconductor detector that enables to simultaneously measure the energy and time of arrival of each incident X- ray photon. These properties, along with the high spatial resolution and high efficiency, due to the CdTe sensor material, can be exploited for several imaging applications, such as X-ray phase contrast imaging (XPCI).XPCI relies on the phase shift suffered by X-rays when traversing the sample. This study focuses on the free-space propagation XPCI and single mask edge illumination XPCI methods, which are two approaches that are well suited for laboratory implementations.Since both techniques are highly sensitive to charge-sharing, the Timepix3 energy and time information for each photon are used to minimize this effect by using pixel clustering methods. In addition, the performance of both XPCI techniques across a 30kVp source spectrum is studied using the energy-resolving capabilities of the detector. In both cases, the phase contrast and signal-to-noise ratio (SNR) are assessed as a function of different energy. Finally, it is demonstrated that phase contrast enhancement is feasible with pixel clustering and energy-selection for both XPCI techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call