Abstract

Message authentication codes (MACs) are valuable tools for ensuring the integrity of messages. MACs may be built around a universal hash function (NH) which was explored in the construction of UMAC. In this paper, we use a variation on NH called WH. WH reaches optimally in the sense that it is universal with half the hash length of NH and it achieves perfect serialization in hardware implementation. We achieved substantial power savings of up to 59 percent and a speedup of up to 7.4 times over NH. Moreover, we show how the technique of multihashing and the Toeplitz approach can be combined to reduce the power and energy consumption even further while maintaining the same security level with a very slight increase in the amount of the key material. At low frequencies, the power and energy reductions are achieved simultaneously while keeping the hashing time constant. We developed formulae for estimation of the leakage and dynamic power consumptions as well as the energy consumption based on the frequency and the Toeplitz parameter t. We introduce a powerful method for scaling WH according to specific energy and power consumption requirements. Our implementation of WH-16 consumes only 2.95 /spl mu/W at 500 kHz. It can therefore be integrated into a self-powered device.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.