Abstract

Conservation of energy usage is essential in chemical process plants due to the expanded energy users and demands alongside the carry-on hike of energy prices. This study analyzed the performance of energy savings in a heat exchanger network (HEN). It is based on decreasing utility usage while increasing process-to-process heat exchange in HEN using a path combination approach at different heat recovery approach temperatures (HRATs). The approach generates different combined path options for heat shifting from utilities to exchangers in a HEN. In terms of cost targeting, the optimal HRAT in a HEN is determined for each path’s combination option. The study focused on the HEN of crude oil preheat trains. Shifting heat load between utilities implies adding and subtracting loads to and from exchangers in a HEN. Therefore, a minor retrofit to compensate for the heat transfer area is required for some HEN exchangers. The optimum HRAT corresponding to the lowest total cost was determined for each option and ranged between 8 °C and 14 °C. Moreover, two out of five options in HEN with low capital investment and a short payback period were found to be promising.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call