Abstract
Aiming at improving the energy efficiency of air cooled servers in data centers, we devise a novel control oriented, nonlinear, thermal model of the servers that accounts explicitly for both direct and recirculating convective air flows. Instrumental to the optimal co-design of both geometries and cooling policies, we propose an identification methodology based on Computational Fluid Dynamics (CFD) for a generic thermal network of m fans and n electronic components. The performance of the proposed modelling framework is validated against CFD measurements with promising results. We formalize the minimum cooling cost control problem as a polynomially constrained Receding Horizon Control (RHC) and show, in-silico, that the resulting policy is able to efficiently modulate the cooling resources in spite of the unknown future computational and electrical power loads.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.