Abstract

In this article, we analyze the interaction between powertrain technology, predictive driving functionalities, and inner-city traffic conditions. A model predictive velocity control algorithm is developed that utilizes dynamic traffic data as well as static route information to optimize the future trajectory of the considered ego-vehicle. This controller is then integrated into a state-of-the-art simulation environment for automated driving functionalities to calculate energy saving potentials for vehicles with a conventional gasoline engine powertrain and a P3-hybrid powertrain configuration as well as for a battery electric vehicle based on real driving measurements. The comparison of these powertrains under various traffic conditions shows that all three technologies profit from predictive driving functionalities. The determined reduction in energy demand ranges from 15% to more than 40%, but it is highly dependent on the boundary conditions and the selected powertrain technology. Specifically, it is shown that electrified powertrains can profit the most when the time-gap to the preceding vehicle is maintained at a high level. For a conventional powertrain, this effect is less pronounced and can be attributed to the efficiency characteristics of gasoline engines. It can be concluded that the development of advanced predictive driving functionalities requires microscopic simulation of inner-city traffic to achieve optimum results with regard to energy consumption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call