Abstract
Ventilation system with a latent heat thermal energy storage (LHTES) unit can be used to reduce building energy consumption, which stores the coldness of nighttime outdoor air in the LHTES unit and releases it to cool the fresh air during the daytime. The potential energy saving through the use of the system over a conventional ventilation system, however, has seldom been quantitatively evaluated. This study develops and validates a computational heat transfer model of the system, which takes into account two-dimensional heat transfer in phase change material (PCM). The effect of PCM melting temperature on the melted fraction of LHTES unit is investigated to determine the optimum melting temperature. This study then calculates and evaluates the energy saving potential of the LHTES system in summer for eight cities located in four different climate zones of China. The energy saving potential is assessed in terms of cooling energy supply, cooling energy supply ratio, net electricity saving and electricity saving ratio. The results show that the seasonal average cooling energy supply ratio varies from 39% to 194%, with a mean value of 85%, and the seasonal average electricity saving ratio ranges from 26% to 165%, with a mean value of 68%.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.