Abstract

This article presents key energy use figures and explores the energy saving potential for electric lighting in office buildings based on a review of relevant literature, with special emphasis on a North European context. The review reveals that theoretical calculations, measurements in full-scale rooms and simulations with validated lighting programs indicate that an energy intensity of around 10kWh/m2yr is a realistic target for office electric lighting in future low energy office buildings. This target would yield a significant reduction in energy intensity of at least 50% compared to the actual average electricity use for lighting (21kWh/m2yr in Sweden). Strategies for reducing energy use for electric lighting are presented and discussed, which include: improvements in lamp, ballast and luminaire technology, use of task/ambient lighting, improvement in maintenance and utilization factor, reduction of maintained illuminance levels and total switch-on time, use of manual dimming and switch-off occupancy sensors. Strategies based on daylight harvesting are also presented and the relevant design aspects such as effects of window characteristics, properties of shading devices, reflectance of inner surfaces, ceiling and partition height are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.