Abstract

Abstract This paper presents the formulation of a variable load sense control strategy suitable to achieve power savings in hydraulic systems using postcompensated load sensing (LS) hydraulic control architectures. Such architecture is typical in off-road construction machinery. The paper also describes the application of the proposed control strategy referred to as variable load sensing margin (VLM) on a full-size wheel loader. The paper first presents the rationale for the proposed strategy, showing how the state-of-the-art LS architecture present in commercial machines has a margin for lowering the throttling losses present at the control valves. A feedforward controller, derived from an empirical study on a reference vehicle, is used to control the flow to the front-end loader functions. Test results show improvements of the hydraulic power consumption up to 45%, based on the commanded speed of each front-end loader actuator. The paper also describes a gain scheduling pressure feedback control strategy, which is used to allow controlling also functions that include priority. For the case of off-road vehicles, this is typically the steering function. The experimental results show good performances with an error in controlled velocity below 5%, which is achieved when the front-end loader functions are used concurrently with the steering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.