Abstract

ABSTRACTDouble modulated beam mass spectrometry was used to obtain the first measurements of the identity, relative flux, and energy of film precursors in reactive dc magnetron sputtering. In these experiments, a 2″ diameter silicon target was sputtered in an argon plus deuterium plasma at an argon pressure of 1.5 mTorr. This system produces high quality a-Si:D. Energetic neutral Si and SiD were observed, while energetic neutral SiD2 and SiD3 were absent. The arrival rate of D in the form of SiD increased and then saturated at 19 percent of the total flux as the deuterium pressure was varied from 0 to 5 mTorr. The sputtered Si energy agreed qualitatively with the standard Thompson theory. Energetic ions located at mass 2 and 4 were measured with energies much greater than the sputtered Si. Thermal silane was also detected, raising the possibility that thermal silane radicals in addition to energetic Si and SiD contribute to film growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.