Abstract

With the advent of high-perfomance liquid chromatography (HPLC)-tandem mass spectrometry (MS) using ion trap mass analysers it is possible to acquire unambigious structural information in particular with respect to aspects of regiochemistry and stereochemistry of organic compounds present in complex mixtures such as coffee extracts. However, HPLC-MS methods are resource extensive, laborious and lacking user friendliness. To introduce a simple parameter - the energy threshhold for fragmentation - determined using energy resolved MS and demonstrate its value for the complete structural characterisation and even relative quantification of individual isomeric chlrogenic acids in direct infusion experiments. Monocaffeoyl and dicaffeoyl quinic acids were investigated by direct infusion energy resolved mass spectrometry (ER-MS) in negative in mode, using a quadrupole ion trap and quadrupole time-of-flight (Q-TOF) mass spectrometer. Methanolic coffee extracts were quantitatively investigated by HPLC-MS and direct infusion ER-MS. Fragmentation occurs with retention of regiochemistry and regiochemistry of fragment ions can be determined using ER-MS. Analysis of breakdown graphs allows extraction of a single numerical parameter that allows assignment of regiochemistry. Analysis of monocaffeoyl and dicaffeoyl quinic acids revealed that regiosiomers could be distinguished and assigned based on their dissociation energies in collisional induced activation. Furthermore relative quantification of regioisomers by direct infusion ER-MS is possible within an error range of ±10% if compared with a conventional quantitative LC-MS method. ER-MS can be exploited in determining relative isomers quantities of chlorogenic acids (CGAs) in crude plant extracts by direct infusion tandem MS omitting time and resource intensive chromatographic separation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.