Abstract

Absolute ligand binding energies are determined for the 2:1 complexes of bis-oxazoline ligands and Cu(I) in the gas phase by the fitting of energy-resolved collision-induced dissociation cross sections. The complexes were chosen for their occurrence in asymmetric catalysis for which the phenomenon of nonlinear effects is explained by differences in stability for homochiral and heterochiral complexes. Pseudo-enantiomeric ligands are used so that mass spectrometric measurements can be employed. The measurements find that the sterically similar, but electronically different, isopropyl versus phenyl substituents lead to a different stability ordering of the homo- versus heterochiral complexes, which then leads to the prediction of nonlinear effects in asymmetric catalysis by the complexes with isopropyl-substituted ligands. The origin of the difference in stability order is found in noncovalent interactions between the phenyl groups on the ligands, which are poorly described by DFT calculations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call