Abstract

Food consumption was measured in six female and seven male hand-raised marsh harrier (Circus aeruginosus) nestlings. Females consumed on average 4,321 g and males consumed 3,571 g of food during the nestling stage from 0 to 36 d. Total consumption until 56 d was 6,960 g and 5,822 g for females and males, respectively. On the basis of Fisher's sex ratio theory, this food intake ratio of 0.46 (intake male/[intake male + female]) would explain the observed male-biased fledging sex ratio of 55% males in marsh harrier broods. Growth, gross energy intake, and metabolizable energy intake were measured, along with metabolism of the nestlings, enabling us to determine energy allocation. The assimilation quotient (Q = 0.72) did not differ systematically between the sexes. Differences in metabolic rates between males and females at 15 and 30 d of age were fully attributable to the difference in body mass. Sexual size dimorphism in marsh harriers (female body mass around 60 d of age is 1.28 times greater than male mass) did not fully explain the difference in food intake between male and female nestlings: an analysis of energy requirements for growth and body mass in 16 avian species shows that energy intake was less than proportional to the average body mass at release. The data presented in this study are in agreement with Fisher's theory of inverse proportionality between the sex-specific ratios of energy requirements for growth and of offspring numbers in the marsh harrier population.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call