Abstract

Structural battery composites are multifunctional materials intended to provide energy storage capacity while maintaining their strength and load bearing capacity under significant mechanical loads. In this study, we investigate the mechanics of carbon fiber debonding, a critical failure mechanism in structural battery composites. The carbon fibers are intended to serve both as an electrochemically active material and to bear mechanical load in the composite system. We derive an analytical solution to the energy release rate for steady-state fiber debonding for different electrochemical and mechanical loading cases with the aid of the classical solution for the Eshelby inclusion problem. The analytical solutions are validated with finite element simulations. We find a higher energy release rate and thus a greater driving force for fiber debonding is caused either by a lower lithium concentration in the fiber and/or by greater transverse mechanical loads such as biaxial tension or shear applied at the far field in the matrix. We find that the model is predictive even for transversely isotropic fibers despite the assumption that the fiber is elastically isotropic in the model. This work can provide guidance for the design of mechanically robust structural batteries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call