Abstract
The dissipative harmonic oscillator is studied as a model for vibrational relaxation in a liquid environment. Continuum limit expressions are derived for the time-dependent average energy, average width of the population, and the vibrational population itself. The effect of the magnitude of the solute-solvent interaction, expressed in terms of a friction coefficient, solvent temperature, and initial energy of the oscillator on the relaxation has been studied. These results shed light on the recent femtosecond stimulated Raman scattering probe of the 1570 cm(-1) -C=C- stretching mode of trans-Stilbene in the first (S1) excited electronic state. When the oscillator is initially cold with respect to the bath temperature, its average energy and width increase in time. When it is initially hot, the average energy and width decrease with time in qualitative agreement with the experimental observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.