Abstract

Bones of the skeleton are constantly remodeled through bone resorption by cells called osteoclasts and bone formation by cells called osteoblasts. Both cell types are under multi-hormone control. New research findings demonstrate that bone formation by osteoblasts is negatively regulated by the hormone leptin, which is secreted by adipocytes and acts through the leptin receptor in the central nervous system and ultimately through the sympathetic nervous system. Leptin deficiency leads to increased osteoblast activity and increased bone mass. Reciprocally, expression of the Esp gene, exclusive to osteoblasts, regulates glucose homeostasis and adiposity through controlling the osteoblastic secretion of the hormone-like substance osteocalcin. An undercarboxylated form of osteocalcin acts as a regulator of insulin in the pancreas and adiponectin in the adipocyte to modulate energy metabolism. Osteocalcin deficiency in knockout mice leads to decreased insulin and adiponectin secretion, insulin resistance, higher serum glucose levels and increased adiposity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.