Abstract

The widespread use of plastic goods creates huge disposal issues and environmental concerns. Increasing emphasis has been paid to the notion of a circular economy, which might have a significant impact on the demand for plastic raw materials. Post-consumer plastics recycling is a major focus of the nation’s circular economy. This study focuses on energy recovery from waste plastics as an alternative fuel source to meet the circular economy demand. Waste plastic fuel produced through pyrolysis has been claimed to be utilized as a substituted fuel. This work focuses to determine the performance and emission standards of Waste Plastic Fuel (WPF) generated from the pyrolysis of High-Density Polyethylene (HDPE) in a single-cylinder Direct Injection Diesel Engine (DIDE). Three different ratios of WPF were combined with 10% ethanol and 10% ethoxy ethyl acetate as an oxygenated additive to create quaternary fuel blends. The ethanol has a low viscosity, a high oxygen content, a high hydrogen-to-carbon ratio as favourable properties, the quaternary fuel results the improved brake thermal efficiency, fuel consumption and reduced emissions. The blend WEE20 exhibits 4.7% higher brake thermal efficiency, and 7.8% reduced fuel consumption compared to the diesel. The quaternary fuel blends demonstrated decreased carbon monoxide of 3.7 to 13.4% and reduced hydrocarbons of 2 to 16% under different load conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.