Abstract

Hydrothermal carbonization (HTC) of carbonaceous waste is an important way of energy recovery to obtain renewable fuels. Here, cow manure (CM) and industrial sludge (IS), two kinds of wastes with different properties, were pretreated by HTC at different temperatures. The elements migration and the physicochemical structural characteristics of hydrochar during HTC were evaluated. The pyrolysis and gasification performance of hydrochar was also studied. The results show that HTC treatment can significantly increase the carbon content and reduce the oxygen content of feedstocks, so as to obtain clean solid fuels with high energy densification and realize energy recovery from low value wastes. The distribution of pyrolysis products of co-hydrochar is close to that of IS due to the interaction between the components of CM and IS. The co-hydrochar has good gasification reactivity, showing obvious synergistic effect. There is multi-component interaction in the process of co-HTC due to the difference of feedstocks composition and properties between CM and IS. The abundant aliphatic and oxidized aliphatic hydrocarbons in IS may inhibit the polycondensation and aromatization of cellulose and hemicellulose hydrolysates in CM due to hydrogen supply or steric hindrance. Therefore, co-hydrochar has carbon structure and fuel properties close to that of IS hydrochar.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.