Abstract

Practically all synchrotron x-ray sources to data are based on the use of storage rings to produce the high current electron (or positron) beams needed for synchrotron radiation (SR). The ultimate limitations on the quality of the electron beam, which are directly reflected in many of the most important characteristics of the SR beams, arise from the physics of equilibrium processes fundamental to the operation of storage rings. It is possible to produce electron beams with superior characteristics for SR via photoinjected electron sources and high-energy linacs; however, the energy consumption of such machines is prohibitive. This limitation can be overcome by the use of an energy recovery linac (ERL), which involves configuring the electron-beam path to use the same superconducting linac as a decelerator of the electron beam after SR production, thereby recovering the beam energy for acceleration of new electrons. ERLs have the potential to produce SR beams with brilliance, coherence, time structure, and source size and shape which are superior to even the best third-generation storage ring sources, while maintaining flexible machine operation and competitive costs. Here, we describe a project to produce a hard x-ray ERL SR source at Cornell University, with emphasis on the characteristics, promise, and challenges of such an ERL machine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call