Abstract
Energy recovery linac (ERL) holds great promise for generating high repetition-rate and high brightness electron beams. The application of ERL to drive a free-electron laser is currently limited by its low peak current. In this paper, we consider the combination of ERL with the recently proposed angular-dispersion induced microbunching technique to generate fully coherent radiation pulses with high average brightness and tunable pulse length. Start-to-end simulations have been performed based on a low energy ERL (600 MeV) for generating coherent EUV radiation pulses. The results indicate an average brightness over 1025 phs/s/mm2/mrad2/0.1%BW and average power of about 100 W at 13.5 nm or 20 W with the spectral resolution of about 0.5 meV with the proposed technique. Further extension of the proposed scheme to shorter wavelength based on an ERL complex is also discussed.
Highlights
Energy recovery linac (ERL) holds great promise for generating high repetition-rate and high brightness electron beams
In order to further improve the brilliance of the synchrotron radiation light source, the diffraction limited storage rings (DLSRs), recognized as one type of the 4th generation light sources, have been developed in the past
It is known that it helps to provide higher brightness and space coherence with a so-called multi-bend achromat (MBA) storage ring lattice design, that is to decrease the bending angle in each of the dipole bending magnets, allowing stronger focusing by multipole magnets between the bending magnets, instead of the double or triple bend achromat (DBA or TBA) lattice mostly employed in the 3rd generation light sources
Summary
Energy recovery linac (ERL) holds great promise for generating high repetition-rate and high brightness electron beams. We consider the combination of ERL with the recently proposed angular-dispersion induced microbunching technique to generate fully coherent radiation pulses with high average brightness and tunable pulse length. Start-to-end simulations have been performed based on a low energy ERL (600 MeV) for generating coherent EUV radiation pulses. The average brilliance (B) of the 3rd generation light sources, defined as the photon flux (F) over the in 0.1% spectral bandwidth, B = F/4π 2 x x′ y y′ , transverse is typically photon beam size (∑x∑y) and divergence (∑’x∑’y) 1 019 phs/s/mm2/mrad2/0.1%BW. In order to further improve the brilliance of the synchrotron radiation light source, the diffraction limited storage rings (DLSRs), recognized as one type of the 4th generation light sources, have been developed in the past. The DLSRs provide high average brightness of about 1022 phs/s/mm2/mrad2/0.1%BW and high coherent fractions of about
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.