Abstract

Automotive shredder residue (ASR) is a heterogeneous waste stream with varying particle size and elemental composition. Owing to its complexity and hazardous characteristics, landfilling of ASR is still a common practice. Nevertheless, incineration with energy recovery of certain ASR fractions (Waste-to-Energy, WtE) emerges as an interesting alternative. In a full scale experiment, a waste mix of 25 % heavy ASR, 25 % refuse derived fuel (RDF), and 50 % waste water treatment (WWT) sludge was incinerated in the SLECO fluidized bed combustor (FBC) at the Indaver site in Antwerp, Belgium. Input and output streams were sampled and analyzed to make an inventory of the most important pollutants and toxics. The inventory was further used to determine the environmental impact. Results are compared to those of two other scenarios: incineration of the usual waste feed (70 % RDF and 30 % WWT sludge) and co-incineration of 39 % ASR with 61 % WWT sludge. It can be concluded that co-incineration of heavy ASR in an existing FBC is a valid and clean technology to increase current reuse and recovery rates. In the considered FBC, 27 % of the energetic value of ASR can be recovered, while all emissions remain well below regulatory limits and only 12.6 % of the heavy ASR needs to be landfilled. The proportion of ASR in the input waste mix is however limited by the heavy metal concentration in the ASR and the generated ashes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.