Abstract

Spray drying is a widely used unit operation in the chemical industry. It is highly energy intensive, requiring hot, dry airstreams, at temperatures up to 550°C, to dry a wide range of products. Exhaust air from a dryer is usually vented to the atmosphere with little or no heat recovery. At best only the sensible heat associated with the air stream is recovered, although the majority of the stream's energy is in the form of latent heat associated with the evaporated water. Exhaust airstreams usually contain moisture to cause visible plumes upon leaving the dryer stack. A two-stage absorption heat transformer (A.H.T.) has been designed and contructed to investigate the potential for dehumidifying and reheating a simulated dryer exhaust stream to make it suitable for recycling to the dryer inlet. The amount of air vented to atmosphere and also the amount of wasted heat would be reduced by incorporating an A.H.T. into the drying operation. Performance data for the A.H.T. indicates that an airstream can be reheated to a temperature of 160°C, using a lithium bromide solution of 68% w/w, with a circulation ratio (LiBr: steam flow) of 14.8. Temperature lifts between 50 and 70°C are possible in the reheat column when using a low circulation ratio and a high LiBr concentration. Experiments show that a humid air stream can be dehumidified to a level suitable for recycling by direct contact with a concentrated lithium bromide stream.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.