Abstract
The pyrolysis and trace element mitigation characteristics are investigated by contrast to solvent extraction for four oily sludges, including storage tank bottom sediment (OS-1), scum from a wastewater separator (OS-2), white-clay-adsorbed waste oil (OS-3), and settlings from wastewater treatment (OS-4). Slow pyrolysis at 700 °C generated a single oil phase for OS-1 and separate oil and aqueous phases for OS-2, OS-3 and OS-4. Up to 73.0–88.3 % of the total energy were recovered from OS-1, OS-2 and OS-3 in the oil phase with 19.9–77.1 % oil yield; however, the oil phase from OS-4 accounted for only 13.3 % of the total energy, while the aqueous product accounted for 68.0 % of the total energy. Quantification of 16 trace elements revealed that OS-2 and OS-4 had much higher contents of Cu/Zn/As/Se/Cd/Pb and Ni/Cu/Zn/Se/Cd contents than the average crustal abundances, respectively. Correlations between evaporation and extraction rates indicated that the mitigation behaviors of trace elements were related to their occurrence modes in different oily sludges. Except for Cd, As and Se, all other trace elements were enriched in the pyrolysis residues of the oily sludges. Ni in the pyrolysis residue of OS-4 posed a moderate potential ecological risk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.